DATSUN 280ZX

Model S130 Series

SECTIONEC

EMISSION CONTROL SYSTEM

CRANKCASE EMISSION CONTROL SYSTEM

MSPECTION

P.C.V. VALVE

CONTENTS

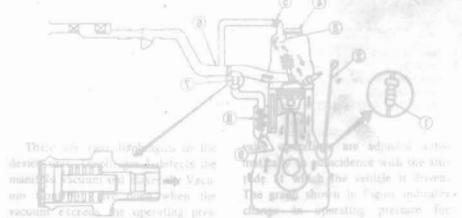
DESCRIPTION

to lottle manifold and throaties throatile chamber, through the GENERAL DESCRIPTION EC- 2 SPARK TIMING CONTROL SYSTEM EC-13 CRANKCASE EMISSION CONTROL CATALYTIC CONVERTER SYSTEM EC-14 SYSTEM EC- 2 EVAPORATION EMISSION CONTROL EC- 2 SYSTEM EC-16 DESCRIPTION EC- 2 INSPECTION DESCRIPTION EC-16 OPERATION EC-16 **EXHAUST EMISSION CONTROL** EC- 3 INSPECTION EC-17 SYSTEM DESCRIPTION EC- 3 SERVICE DATA AND BOOST CONTROLLED DECELERATION SPECIFICATIONS DEVICE (B.C.D.D.) EC- 3 INSPECTION AND ADJUSTMENT EC-19 EXHAUST GAS RECIRCULATION (E.G.R.) TIGHTENING TORQUE EC-19 SYSTEM EC. 8 libroo lie roben radenado alt

VENTILATION HOSES

Check hoses and hose connections for leaks;

 Disconnect all hoses and clean with compressed air.


If any hose cannot be freed of obstructions, replace:

Ensure that flame arrester is surely sarrad, in boss between throttle

DECELERATION DEVICE (B.C.D.D.)

DESCRIPTION

The Boost Controlled Deceleration Device (B.C.D.D.) is employed to reduce IRC annuous apartied during coasting. The B.C.D.D. installed under the throate chamber as a part of disapplies additional air as the factor manifold during massing to maintain the manifold securing at the proper operating pressure.

avatem returns blow by gas to let The viadliting air

the transmitted through the Vacuum to Winner to the transmission models.

The Art Control Makes less that system consists of B.C. D.D., various transmission of addresses less that system consists of B.C. D.D., various transmission of the proper operation parameters and defecting switch and insplicing.

The Canternia proper operation parameters at courses of B.C. D.D., various consists an odels.

altitude feet have

1 Par KQ-6 Pownhages Eminsion Control Symbors

GENERAL DESCRIPTION

There are three types of emission . control system. These are:

- 1. Closed type crankcase emission control system.
- 2. Exhaust emission control system.
- Evaporative emission control

Periodic inspection and required

CONTROL

servicing of these systems should be carried out to reduce harmful emissions to a minimum.

CRANKCASE EMISSION CONTROL SYSTEM

DESCRIPTION

This system returns blow-by gas to both the intake manifold and throttle chamber.

The positive crankcase ventilation (P.C.V.) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the P.C.V. valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from throttle chamber, through the tube connecting throttle chamber to rocker cover, into the crankcase.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve, and its flow goes through the tube connection in the reverse direction.

On cars with an excessively high blow-by, some of the flow will go through the tube connection to throttle chamber under all conditions.

INSPECTION

P.C.V. VALVE

With engine running at idle, remove the ventilation hose from P.C.V. valve. If the valve is working, a hissing noise will be heard as air passes through the valve and a strong vacuum should be felt immediately when a finger is placed over valve inlet.

CONTROL: E CHEELERON

- Fresh air
- Blow-by gas
- Seal rubber
- 2 Oil level gauge
- Baffle plate
- Oil filler cap
- 5 Flame arrester

- VENTILATION HOSES
- Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air.

If any hose cannot be freed of obstructions, replace.

Ensure that flame arrester is surely inserted in hose between throttle chamber and rocker cover.

ET469

Throttle chamber

P.C.V. valve

Baffle plate

Steel net

Fig. EC-1 Crankcase Emission Control System

EXHAUST EMISSION CONTROL SYSTEM

legit the pre-determined value

DESCRIPTION

ducing a signal. This shipsil that days a river

amplifier to open the vacuum control

The exhaust emission control system is made up of the following:

UTION:	0.116	Non-Californía models		
Emission control system	California models	Except Canada	For Canada	
B.C.D.D. (Boost Controlled Deceleration	Speed Detecting Switch (M/T) Inhibitor Switch (A/T)		when dispressing it repetition in the product of the product of the state of the st	
Device)	With Altitude Corrector	Without Altitude Corrector		
sale la celle Negram ghanday lesical sale la celle Negram ghanday lesical sale la celle Sale Negram control la celle Sale Negram con	12 Air passage 13 Diaphragm II 14 Air control valve	E.G.R. Control Valve T.V.V. (Thermal Vacuum Valve		
E.G.R. (Exhaust Gas Recirculation) Control System	B.P.T. (Back Pressure Transducer) Valve	B.P.T. (Back Pressure Transducer) Valve	Judgeren	
Control to 10 peter prece 1 - che, L rector vest con to 100, EC 4 - a	V.D.V. (Vacuum Delay Valve)	MPH - 12 V	Tabon dispating to a plan	
Spark Timing Control System	V.D.V. (Vacuum Delay Valve)	- 124	V.D.V. (Vacuum Delay Valve)	
Catalytic Converter System	Catalytic Converter		FLAS)	

BOOST CONTROLLED DECELERATION DEVICE (B.C.D.D.)

The BC & Selventario Division of BC Dr.

S Lock spring

9 Alithule corrector

Vacuum control

DESCRIPTION

The Boost Controlled Deceleration Device (B.C.D.D.) is employed to reduce HC emissions emitted during coasting. The B.C.D.D., installed under the throttle chamber as a part of it, supplies additional air to the intake manifold during coasting to maintain the manifold vacuum at the proper operating pressure.

There are two diaphragms in the device unit. Diaphragm I detects the manifold vacuum and makes the Vacuum Control Valve open when the vacuum exceeds the operating pressure. Diaphragm II operates the Air Control Valve according to the vacuum transmitted through the Vacuum Control Valve. The Air Control Valve regulates the amount of additional air so that the manifold vacuum can be kept at the proper operating pressure. On California models, the operating pressure changes depending on altitude; thus, diaphragm II and control

6 Adjusting screw

valve operations are adjusted automatically in coincidence with the altitude at which the vehicle is driven. The graph shown in Figure indicates change in operating pressure for changes in atmospheric pressure and altitude. See Fig. EC-8.

(10 MPH): ON (For M/T) (For A/T)

Includes switch
"N" or "P" pusition: ON

B.C.D.D.

Displayer, I monitois the ments

fold vactuum, when the vactum ex-

as to open the vacuum-control valve

On manual transmission models, this system consists of B.C.D.D., vacuum control solenoid valve, speeddetecting switch and amplifier.

On automatic transmission models, it consists of B.C.D.D., vacuum control solenoid valve and inhibitor switch.

OPERATION

B.C.D.D.

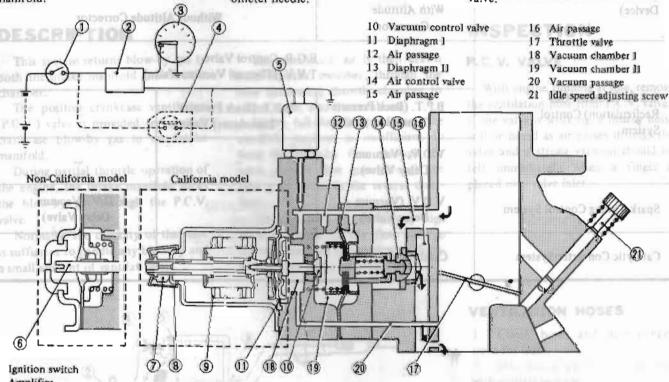
Diaphragm I (1) monitors the manifold vacuum; when the vacuum exceeds a pre-determined value, it acts so as to open the vacuum control valve 10. This causes the manifold vacuum to be introduced into vacuum chamber II (19) and actuates diaphragm II (13).

When diaphragm II operates, the air control valve (14) opens the passage and introduces the additional air into the manifold.

The amount of air is controlled by the servo-action of the air control valve (4) and vacuum control valve (10) so that the manifold vacuum may be kept at the pre-determined value.

As the car speed falls below 10 M.P.H., this switch is actuated, producing a signal. This signal actuates the amplifier to open the vacuum control solenoid valve.

Vacuum control solenoid valve


Manual transmission models:

The vacuum control solenoid valve is controlled by a speed detecting switch that is actuated by the speedometer needle.

Automatic transmission models:

The exhaust enlisted control system is made

When the shift lever is in the "N" or "P" position, the inhibitor switch mounted on the transmission turns on to open the vacuum control solenoid valve Deceleration O

- Amplifier
- Speed detecting switch Below 16 km/h (10 MPH): ON (For M/T)
- Inhibitor switch "N" or "P" position: ON (For A/T)
- Vacuum control solenoid valve
- Adjusting screw
- 7 Adjusting nut
- Lock spring
- Altitude corrector

EC243A

Fig. EC-2 Schematic Drawing of B.C.D.D.

REMOVAL WATER Idence WAVOMAN the graphs shown in

B.C. D.D. operating pre. D. O. S.

The B.C.D.D. cannot be disassembled, If it is found to be functioning unsatisfactorily, it must be replaced as an assembly, partitions but its live anitoslob

could opposite are adjusted auto-

changes in atmospheric pressure and

altitude 588 Fir EC-8.

1. Remove B.C.D.D. by unscrewing the three securing screw (1).

Do not unscrew the four B.C.D.D. assembly screws (2).

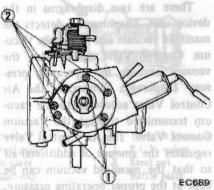


Fig. EC-3 Removing B.C.D.D.

2. To install, reverse the removal procedure.

Tightening torque: 20 to 40 kg-cm (17 to 35 in-lb)

Vacuum control solenoid The Boost Controlled Decelerview

- Vacuum control solenoid valve can be easily removed with a wrench.
- 2. To install, reverse the removal procedure.
- Tightening tarque:

180 to 350 kg-cm (156 to 304 in-lb)

INSPECTION entrango .Q.Q.3.8

Control circuit

To check the control circuit, use the check connector. It is located under the ignition coil at the left front of the engine compartment.

CAUTION: madw | Indibit of

Do not attach probes of a circuit tester to those other than designated. Refer to Fig. EC-4 and EC-5.

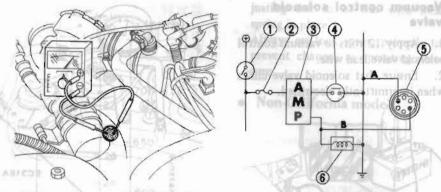
Manual transmission models

Note: Conduct this test by one of the following two methods.

- a. Raise the rear wheels clear of the floor. Block front wheels securely. Use floor stands to support the side member.
- b. Chassis dynamometer test.
- 1. Connect voltmeter probe to check connector as shown in Fig. EC-4.
- Measure voltage.

If result is no good, check amplifier, speed detecting switch, harnesses and connectors. Then replace or repair faulty part.

"A". See Fig. EC-8. When altitude is known, operating pressure will be


found by tincing the arrow

Automatic transmission models

- 1. Connect voltmeter probe to check connector as shown in Fig. EC-5.
- Turn ignition switch "ON" and measure voltage.

If result is no good, check inhibitor switch, harness and connectors. Then replace or repair faulty part.

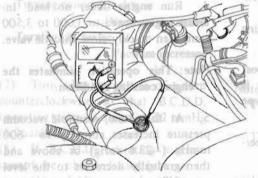
B.C.D.D. W. 373 number (14.76

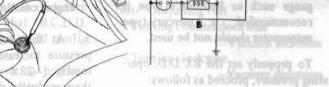
- 1 Ignition switch 4
- 2 Fuse
- 3 Amplifier
- Speed detecting switch

Above 16 km/h (10 mph): OFF Below 16 km/h (10 mph): ON

- 5 Check connector
- 6 Vacuum control solenoid valve

Prepare the following too)


sinsussed while idling


(1) Tackometer to industric

EC412A

Fig. EC-4 Checking B.C.D.D. Control Circuit
(Manual transmission models)

Car speed	Voltmeter	Judgmen
5. E = 1000(11);beequ stol	0 V	No Good
Below 16 km/h (10 MPH)	12 V	ОК
Automatic Transmission	D.D. hvo	A OK
Above 16 km/h (10 MPH)	12 V zwollo)	No Good

- 1 Ignition switch
- 2 Inhibitor switch
- N or P position: ON 1, 2, D or R position: OFF
- 3 Vacuum control solenoid valve
- 4 Check connector

EC413A

Fig. EC-5 Checking B.C.D.D. Control Circuit (Automatic transmission models)

Selector lever position	Voltmeter	Judgmen
COPUL SELECTIVE	0 V	No Good
"P" and "N"	the 12 V (1) and	OK
West to a now I have the above	0 V	OK
"R", "D", "2" and "1"	12 V	No Good

Vacuum control solenoid valve

- 1. Apply 12 volts to vacuum control solenoid valve lead wire.
- Ensure that solenoid valve clicks when intermittently electrified.

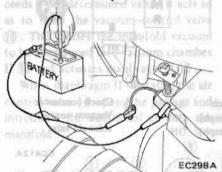


Fig. EC-6 Checking Vacuum Control Solenoid Valve

If a click is not heard, replace solenoid valve.

Operating pressure

Generally, it is unnecessary to inspect and adjust the B.C.D.D., however, if it should become necessary to do so, the procedure is as follows:

Prepare the following tools

- (1) Tachometer to measure the engine speed while idling.
- (2) A vacuum gauge and connecting pipe.

Note: A quick-response type boost gauge such as Bourdon's type is recommended: a mercury-type manometer should not be used.

To properly set the B.C.D.D. operating pressure, proceed as follows:

- Disconnect vacuum control solenoid valve harness connector.
- 2. Connect rubber hose between vacuum gauge and intake manifold.

References manust sifteen as 63

The B.C. Dispossibility he disposemintantilov

Pla EC-5 Checking B C D D. Control Circuit

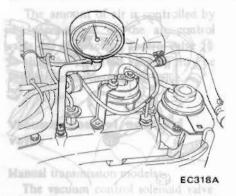


Fig. EC-7 Connecting Vacuum Gauge middlesous seturial by the 2003 15

Start engine and warm up engine until water temperature indicator points to the middle of gauge.

Then adjust idle speed, referring to Checking and Adjusting Ignition Timing (Section ET) for ignition and fuel system.

Idle speed:

Manual Transmission 800 rpm Automatic Transmission (in "D" position) 700 rpm

Run engine under no load, Increase engine speed to 3,000 to 3,500 rpm, then quickly close throttle valve.

Note: This operation simulates the engine coasting condition.

- At that time, manifold vacuum pressure increases abruptly to -600 mmHg (-23.6 inHg) or above and then gradually decreases to the level set at idling.
- Check that B.C.D.D. operating pressure is within the specified pressure.

B.C.D.D. operating pressure (0 m. sea level and 760 mmHg (29.9 inHg), atmospheric pressure):

-470 ± 10 mmHg (-18.5 ± 0.4 inHg)

If engine speed cannot be decreased to idling when checking B.C.D.D. operating pressure, proceed as follows:

Note: Conduct this test by one of the

a. Raise this wheels clear of the

floor. Block front wheels securely

ANN TO PREPER THE EC. S.

following two methods:

D. Chartile dynamometer test

under the ignition coil at the left

California models

- a. In the case of California models, the operating pressure varies in proportion to altitude.
- b. When atmospheric pressure known, operating pressure will be found by tracing the arrow line "A". See Fig. EC-8. When altitude is known, operating pressure will be found by tracing the arrow line "B", See Fig. EC-8.
- c. When checking the set pressure of B.C.D.D., find the specified operating pressure in Fig. EC-8 from the atmospheric pressure and altitude of the given location.
 - For example, if the car is located at an altitude of 1,400 m (4,600 ft). the specified operating pressure for B.C.D.D. is 375 mmHg (14.76 inHg).

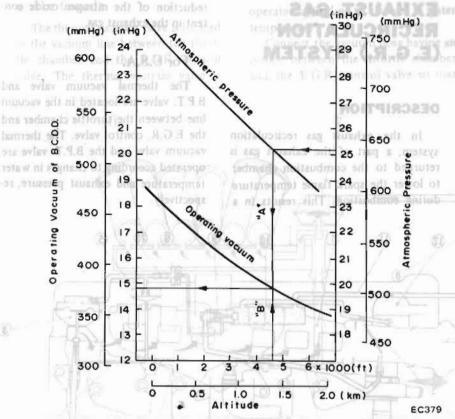


Fig. EC-8 Changes in B.C.D.D. Operating Pressure versus Changes in Atmospheric Pressure and Altitude (California models)

(1) Turn adjusting nut clockwise so that B.C.D.D. operating pressure is on high vacuum side, 32 mmHg (1.26 inHg) away from the specified value.

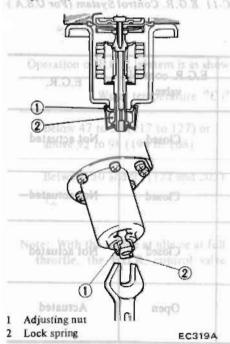


Fig. EC-9 Adjusting B.C.D.D.
Operating Pressure
(California models)

Note: Adjusting Nut Turning counterclockwise

Vacuum decreases
 Turning clockwise

-Vacuum increases

- (2) Turn adjusting nut ¼ of a turn counterclockwise so that B.C.D.D. operating pressure drops by 32 mmHg (1.26 inHg).
- (3) If B.C.D.D. operating pressure cannot be observed clearly even in steps (1) and (2), proceed as follows:
- Turn adjusting nut clockwise so that B.C.D.D. operating pressure is on high vacuum side, 64 mmHg (2.52 inHg) away from the specified value.
- Then turn adjusting nut ½ of a turn counterclockwise.

Note:

- a. The B.C.D.D. operating pressure should be correctly set within the specified range after the above adjustments, even if the engine speed cannot be decreased to idling.
- b. When adjusting B.C.D.D., turn ad-

justing nut in or out with lock spring in place.

Always set lock spring properly to prevent changes in operating pressure.

Non-California models

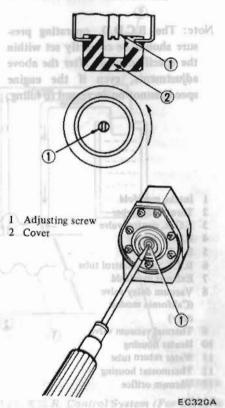


Fig. EC-10 Adjusting B.C.D.D. Operating Pressure (Non-California models)

Note: Adjusting Nut

Turning counterclockwise

Vacuum increases

Turning clockwise

-Vacuum decreases

- (1) Turn adjusting screw counterclockwise so that B.C.D.D. operating pressure is on high vacuum side, 32 mmHg (1.26 inHg) away from the specified value.
- (2) Turn adjusting screw ¼ of a turn clockwise so that B.C.D.D. operating pressure drops by 32 mmHg (1.26 inHg).
- (3) If B.C.D.D. operating pressure cannot be observed clearly even in steps (1) and (2), proceed as follows:
- Turn adjusting screw counterclockwise so that B.C.D.D. operating pressure is on high vacuum side, 64 mmHg (2.52 inHg) away from the

specified value,

Then turn adjusting screw ½ of a turn clockwise. prevent changes, its appressing pr

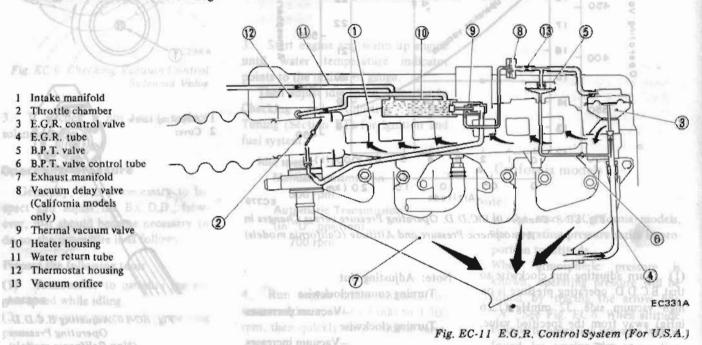
Ensure that solenoid valve THE is

Non-California modela

Note: The B.C.D.D. operating pressure should be correctly set within the specified range after the above adjustments, even if the engine speed cannot be decreased to idling.

EXHAUST GAS RECIRCULATION (E.G.R.) SYSTEM

DESCRIPTION


-Vacuum intresses

In the exhaust gas recirculation system, a part of the exhaust gas is returned to the combustion chamber to lower the spark flame temperature during combustion. This results in a

reduction of the nitrogen oxide content in the exhaust gas.

· For U.S.A.

The thermal vacuum valve and B.P.T. valve are located in the vacuum line between the throttle chamber and the E.G.R. control valve. The thermal vacuum valve and the B.P.T. valve are operated according to changes in water temperature and exhaust pressure, respectively.

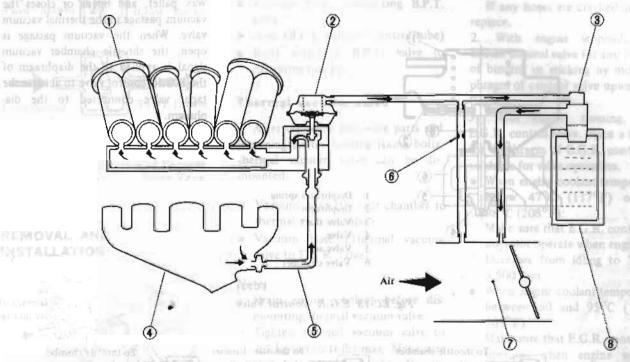
Operation of E.G.R. system is as shown below.

Operating Pressures

(Van-California mailtil)

Water temperature °C (°F)			AM CHARLEST AND AND ADDRESS OF	E.G.R. control valve	E.G.R. the
Below 47 to 53 (117 to 127) or	Closed	Exhaust pressure Below 21 to 33 (0.82 to 1.30)	na Open	Closed	Not actuated
Above 92 to 98 (198 to 208)	mmHgi (i) 20 mpecified value	Above 21 to 33 (0.82 to 1.30)	Closed	Closed	Not actuated
Between 50 and 95	clockwise so presente drug MHmi Open	Exhaust pressure Below 21 to 33 (0.82 to 1.30)	basan Open	Closed	Not actuated
reerved clearly even in (2), proceed as follows ing screw counterclock	box (1) agon	Above 21 to 33 (0.82 to 1.30)	Closed	Open	Actuated

Note: With the engine at idle or at full throttle, the E.G.R. control valve


closes to deactivate the E.G.R. system regardless of water temperature (operation of the thermal vacuum vaive) and B.P.T. valve.

For Canada

The thermal vacuum valve is located in the vacuum line between the throttle chamber and the E.G.R. control valve. The thermal vacuum valve is

operated according to changes in water temperature.

Connect the vacuum hose having an orifice between the throttle chamber and the E.G.R. control valve so that the hose is parallel to the thermal vacuum valve vacuum line. This prevents negative pressure from remaining in the E.G.R. control valve when the thermal vacuum valve is closed.

- I Intake manifold
 - 2 E.G.R. control valve
 - 3 Thermal vacuum valve
- 4 Exhaust manifold

- 5 E.G.R. tube
- 6 Orifice
- Throttle chamber

Vacuum signal source

8 Heater housing

Fig. EC-12 E.G.R. Control System (For Canada)

Operation of E.G.R. system is as shown below.

l cora	Water temperature °C (°F)	Thermal Vacuum Valve	E.G.R. system
	92 to 98 (198 to 208)	Closed	Not actuated
Betwe	en 50 and 95 (122 and 203)	Open	Actuated

Note: With the engine at idle or at full throttle, the E.G.R. control valve um delay valve prevents an abinot

e-off-said out morth individual line file. He-e

E. C.R. control valve, and increases they

a one-way umbrella valve

tween the throffle ubsruksin and

and a sintered steel fluidic restrictor.

Vactum delay valve - Las

closes to deactivate the E.G.R. system regardless of water tempera-

S.O.R.oT

ture (Operation of the thermal vacuum valve).

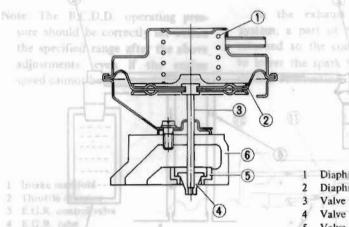
operate as indicated above, check as

pressure to activate the displitium, controlling artish, manifold, sucuring as le rebre sult server (seconderes applied to the E.f., R. control rober 71n L Air Olter other words, recirculated enhants gus Note: When control this vacation house, of the E.G.R. control valve or to Admittile than sing tempel perly posiengint, pperations and save start of

Fig. EC-15 S.P. Strains

E.G.R. Control valve

The E.G:R. control valve controls the quantity of exhaust gas to be led to the intake manifold through vertical


sermal vacuum valve is cl

movement of the taper valve connected to the diaphragm, to which vacuum is applied in response to the opening of the throttle valve.

and the E.C.R. control valve so that

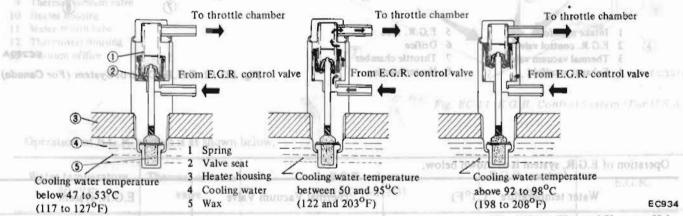
Thermal vacuum valve

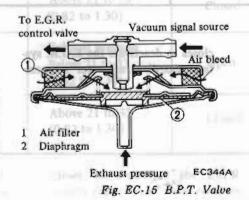
The thermal vacuum valve is mounted in the heater housing on the intake manifold. It detects engine coolant temperature by means of a wax pallet, and opens or closes the vacuum passage in the thermal vacuum valve. When the vacuum passage is open, the throttle chamber vacuum signal is applied to the diaphragm of the E.G.R. control valve to actuate the taper valve connected to the diaphragm.

- Diaphragm spring
- Diaphragm
- Valve shaft
- Valve seat
- Valve chamber

EC231

Fig. EC-13 E.G.R. Control Valve



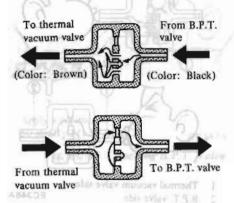

Fig. EC-14 Thermal Vacuum Valve

B.P.T. valve

The B.P.T. valve monitors exhaust pressure to activate the diaphragm, controlling intake manifold vacuum applied to the E.G.R. control valve. In other words, recirculated exhaust gas is controlled in response to positioning of the E.G.R. control valve or to engine operation.

ture (Operation

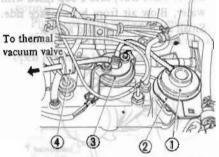
Not deligated value



_lesso(D) nv i s

Vacuum delay valve

During rapid acceleration the vacuum delay valve prevents an abrupt escape of vacuum from the line between the throttle chamber and E.G.R. control valve, and increases the length of E.G.R. operation. The valve is designed for one-way operation and consists of a one-way umbrella valve and a sintered steel fluidic restrictor.


Note: When installing this valve, ensure that it properly oriented.

EC333A

Fig. EC-16 Operation of Vacuum Delay Valve

INSTALLATION

- E.G.R. control valve
- Heat shield plate
- B.P.T. valve (For U.S.A.)
- Vacuum delay valve: (California models)

Fig. EC-17 E.G.R. Control System

E.G.R. control valve

E.G.R. control valve is installed on intake manifold through a gasket. To dismount E.G.R. control valve, remove the following parts:

- Vacuum hose connecting E.G.R. control valve.
- Heat shield plate for E.G.R. control
- Nuts attaching E.G.R. control valve to intake manifold.

Note: To remove vacuum hose, flatten clip connecting vacuum hose to E.G.R. control valve and remove hose by hand.

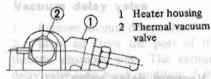
B. P. T. valve

The B.P.T. valve is attached to the intake manifold through the mounting bracket.

To dismount B.P.T. valve, remove following parts:

- Vacuum hoses connecting B.P.T.
- Hose (B.P.T. valve to control tube)
- . Bolts attaching B.P.T. valve to mounting bracket 50 to 95°C (122 to 203°F) Open

Thermal vacuum valve


After removing following parts and loosening heater housing fixing bolts, thermal vacuum valve can be dismounted. thermal vacuum valva.

- · Vacuum hose (throttle chamber to thermal vacuum valve)
- Vacuum hose (Thermal vacuum valve to E.G.R. valve).

Note:

- a. Drain engine coolant before dismounting thermal vacuum valve.
- b. Tighten thermal vacuum valve to 2.2 kg-m (16 ft-lb) max. Make sure that valve is water-tight after installation.

EC301A

Fig. EC-18 Removing Thermal Vacuum Valve

To install E.G.R. control system components, reverse the order of removal.

delight to value inities. They vacuum dainy

Note: When connecting vacuum hoses, ensure that they are properly positioned.

INSPECTIONAL base, nego at eview

her yacuum is persent at and of Entire system

Make a thorough visual check of E.G.R. control system. If necessary. wipe away oil to facilitate inspection.

rise Value provinces

If any hoses are cracked or broken. replace.

- 2. With engine stopped, inspect E.G.R. control valve for any indication of binding or sticking by moving diaphragm of control valve upwards with finger.
- 3. With engine running, inspect E.G.R. control valve. Place a finger on the diaphragm of E.G.R. control valve to check for valve operation.
- When engine coolant temperature is below 47°C (117°F) or above 98°C (208°F): Make sure that E.G.R. control valve

does not operate when engine speed increases from idling to 3,000 to 3,500 rpm.

When engine coolant temperature is between 50 and 95°C (122 and 203°F):

Make sure that E.G.R. control valve operates when engine speed increases from idling to 3,000 to 3,500 rpm.

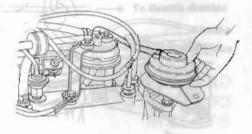


Fig. EC-19 Checking E.G.R. Control Value

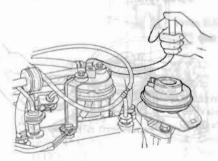
- 4. If E.G.R. control valve does not operate as indicated above, check as follows:
- Engine coolant temperature is between 50 and 95°C (122 and 203°F)
- · Increase engine speed from idling to 3,000 to 3,500 rpm.
- (1) Thermal vacuum valve.
- 1) Disconnect one end (E.G.R. control valve side) of vacuum hose.
 - Make sure that thermal vacuum

valve is open, and that throttle chamber vacuum is present at end of vacuum hose.

 If vacuum is weak or is not present at all, check thermal vacuum valve itself.

Fig. EC-20 Checking Thermal Vacuum
Value

(2) Vacuum Delay Valve.
Check vacuum delay valve itself.


5w 477C (117°F) or above

(3) B.P.T. valve.

1) Disconnect one end (E.G.R. control valve side) of vacuum hose.

 Make sure that B.P.T. valve is operating, and that throttle chamber vacuum is present at end of vacuum hose.

3) If vacuum is not present at all, check B.P.T. valve itself.

EC335A

Fig. EC-21 Checking B.P.T. Valve

(4) E.G.R. control valve.

Check E.G.R. control valve itself.

e Engine coolant temperature is be-

Thermal vacuum valve

Dismount thermal vacuum valve from heater housing.

(1) The muly-select valve low colto

normate the dipartition

Note: Day best sure assessed until

S.F.T. valve

Before dismounting, drain engine coolant from engine.

Check to be sure that thermal vacuum valve opens or closes in response to water temperature as specified.

If test results satisfy the following, thermal vacuum valve is properly functioning:

(ad Coolant of sylav, T.9.8)	Vacuum
temperature saidsone	passage
Below 47°C (117°F)	Closed
50 to 95°C (122 to 203°F)	
Above 98°C (208°F)	Closed

CAUTION: solution heater housing : NOITUAN

Do not allow water to get inside the thermal vacuum valve.

After removing following parts and

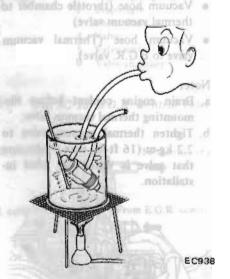
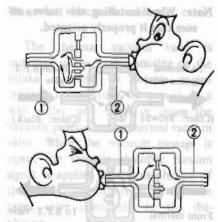



Fig. EC-22 Checking Thermal Vacuum Valve

Vacuum delay valve

Thermal vacuum

- 1. Remove vacuum delay valve.
- 2. Blow air from the port of the B.P.T. valve side. The vacuum delay valve is in good condition if the air flows through the valve.
- 3. Try again from the opposite side (brown face side) of the valve. The valve is in good condition if the air flow resistance is greater than the step 2 above.

- 1 Thermal vacuum valve side
- 2 B.P.T. valve side

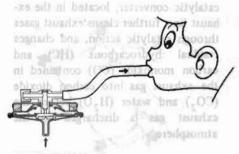
EC3464

Fig. EC-23 Checking Vacuum
Delay Valve

4. If the condition of vacuum delay valve is questionable, dip port (on B.P.T. valve side) into a cup filled with water. Blow air from brown face side. Small air bubbles should appear.

Fig. EC-24 Checking Vacuum Delay Valve

dismount E.C.R. control w:NOITUA


Be careful to avoid entry of oil or dirt into valve.

T. reclient a discounty bla

B.P.T. valve pleased blade realling

Disconnect B.P.T. valve from engine.

 Apply a pressure above 50 mm H2O (1.97 inH2O) to B.P.T. valve and orally suck port back, as shown in Fig. EC-25, to check for leakage. If a leak is noted, replace valve.

Apply a pressure of 50 mmH2O (1.97 inH2O).

EC347A

Fig. EC-25 Checking B.P.T. Valve

SPARK TIMING CONTROL SYSTEM

DESCRIPTION

The spark timing control system is designed to control the distributor vacuum advance during rapid acceleration so as to reduce HC and NOx emissions.

WHEN SHARE

OPERATION: not bear sell if

When the throttle valve is opened rapidly, Vacuum Delay Valve (V.D.V.) restricts the air flow in the line to reduce the rate of vacuum change. The V.D.V. is installed in the vacuum control line to the distributor. The reduced rate of vacuum change provides the vacuum advance unit with some delay time.

When the vacuum of the vacuum source decreases, the vacuum advance unit responds normally because a one way function is provided to the valve.

E.G.R. control valve

Dismount E.G.R. control valve from engine.

1. Apply vacuum to E.G.R. control valve, referring to the following figure. If the valve moves to full position, it is parts in many and the human

Plug hose with vacuum applied.

E.G.R. control valve will remain open for more than 30 seconds.

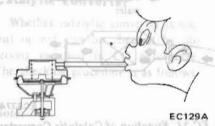
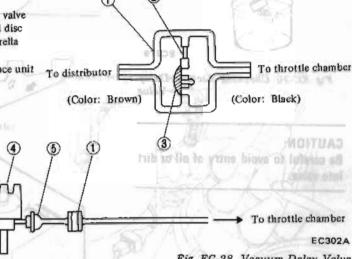


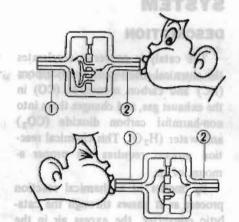
Fig. EC-26 Checking E.G.R. Control

- 2. Visually check E.G.R. control valve for damage, wrinkle or deformaconverter to front and rear as not
- 3. Clean the seating surface of E.G.R. control valve with a brush and compressed air, and remove foreign matter from around the valve and port.

Fig. EC-27 Cleaning E.G.R. Control Valve (23 to 31 ft-lb)

- Vacuum delay valve
- Sintered metal disc
- One-way umbrella 3
- Distributor
- Vacuum advance unit




Fig. EC-28 Vacuum Delay Valve

INSPECTION THE LAVORES

Vacuum delay valve

- Remove vacuum delay valve.
- 2. Blow air from the port of the throttle chamber side. The vacuum delay valve is in good condition if the air flows through the valve.
- 3. Try again from the opposite side (brown face side) of the valve. The valve is in good condition if the air flow resistance is greater than the step 2 above. salest guiding viggA saleM

wheel chocks.

- Distributor side
- 2 Throttle chamber side

Fig. EC-29 Checking Vacuum Delay Valve

Remove acrews securing lower

Loosen bolts connecting catalytic

shelter of catalytic converter.

4. If the condition of vacuum delay valve is questionable, dip port (on brown face side) into a cup filled with water. Blow air from brown face side. Small air bubbles should appear.

V.D.V. is installed in the vacuum

confined line to the distributors The

Fig. EC-30 Checking Vacuum Delay Valve

CAUTION:

Be careful to avoid entry of oil or dirt into valve.

OPERATION

Catalytic converter

The exhaust gas which is left unburned during combustion process is gradually oxidized with excess oxygen, and is converted into harmless carbon dioxide (CO₂) and water (H₂O). The catalytic converter, located in the exhaust line, further cleans exhaust gases through catalytic action, and changes residual hydrocarbons (HC) and carbon monoxide (CO) contained in the exhaust gas into carbon dioxide (CO₂) and water (H₂O) before the exhaust gas is discharged to the atmosphere.

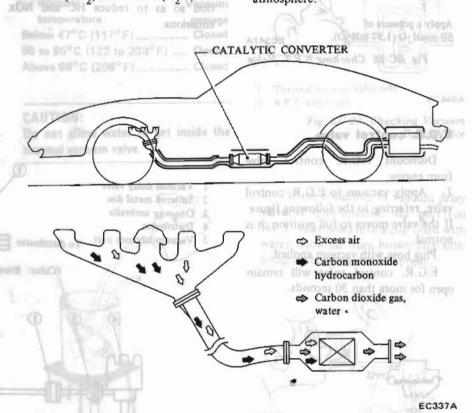


Fig. EC-31 Function of Catalytic Converter

CATALYTIC CONVERTER SYSTEM

a To throttle chardon

BC 281 Vacuum Delay Value

DESCRIPTION

The catalytic converter accelerates the chemical reaction of hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas, and changes them into non-harmful carbon dioxide (CO₂) and water (H₂O). This chemical reaction process requires the proper amount of air.

By means of a chemical reaction process as it passes through the catalytic converter, the excess air in the air-fuel mixture (which has not been burned during the combustion process) is utilized to minimize HC and CO emissions.

REMOVAL AND INSTALLATION

WARNING:

You should not remove catalytic converter until exhaust system has completely cooled off. Otherwise, you may burn yourself.

Whiteward in the debt by inhervaline. The

Vacuum deiny valve

1. Jack up the car,

Note: Apply parking brake and place wheel chocks.

2. Remove screws securing lower shelter of catalytic converter.

Loosen bolts connecting catalytic

converter to front and rear exhaust tubes.

2. Visually check E.G.R. control

Catalytic converter assembly can then be taken out.

3. Installation is in the reverse sequence of removal,

Be careful to avoid entry of oil or dir.

CAUTION:

- Be careful not to damage catalytic converter when handling.
- Never wet catalyzer with water, oil, etc.

Tightening torque:

Catalytic converter bolts
3.2 to 4.3 kg-m
(23 to 31 ft-lb)

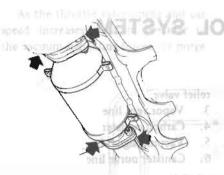


Fig. EC-32 Removing Catalytic Converter

- until water temperature indicator points to the middle of gauge.
- 3. After engine has warmed up, run engine at 2,000 rpm for a few minutes under no load until catalytic converter reaches operating temperature.
- 4. Stop engine and turn ignition switch to "OFF" position.
- 5. Remove connector of water temperature sensor.
- 6. Connect Emission adjuster to harness connector of water temperature sensor. See Fig. EC-33.
- 7. Insert CO meter probe through exhaust tube end until a minimum insertion length of 500 mm (19.69 in) is reached.

- 8. Run engine at 2,000 rpm and adjust CO percentage to 3 percent with emission adjuster.
- Remove injector connector from number six cylinder.
- 10. Keep engine running at 2,000 rpm with no load.
- 11. If CO percentage is less than 1 percent, catalytic converter is functioning properly. (If CO percentage is more than 1 percent, catalytic converter must be replaced.)
- 12. Stop engine and turn ignition switch to "OFF" position.
- Locate water temperature sensor connector and injector connector in place.

INSPECTION

Preliminary Inspection

Visually check condition of all component parts including hoses, tubes, and wires, replace if necessary.

Catalytic converter

Whether catalytic converter is normal or not can be checked by observing variation in CO percentage. The checking procedure is as follows:

Note: In the series is at rest on an and week

- a. Apply parking brake and place wheel chocks.
- b. Shift lever is in Neutral (For manual transmission) and "N" or "P" position (For automatic transmission).
- 1. Visually check catalytic converter for damage or cracks.
- 2. Start engine and warm up engine

Variation of keight thatold remain

When filled and dones had alone

height at the light or trace

Partie has stated and the second of the seco

Leto in a thort members of the cut in Section and Company of the Section of the Company of the C

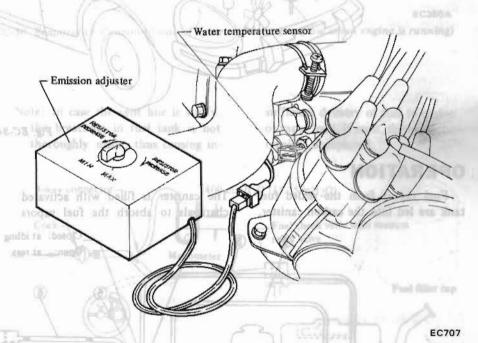


Fig. EC-33 Connecting Emission Adjuster

king Evanoration Emission Control System

Studiosels arrang and married features

Cantrer purge 1000 C Vapor Vant line of the Vapor Vant line of the Valor line of the Contract line of the Contract

nobile that will be garge control value tally makes been the same two members in

To checkator bulease, proceed as

CANISTER PUR

EVAPORATIVE EMISSION CONTROL SYSTEM

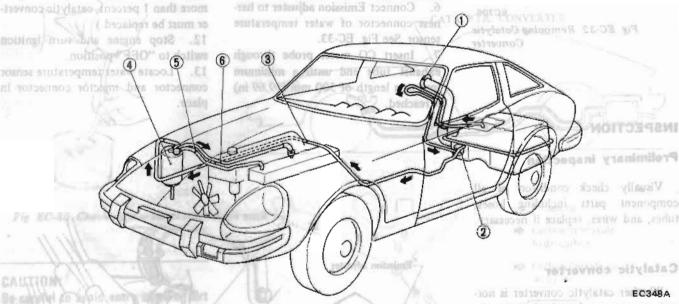
engine at 2.000 rpm for a few rejenter

under on load until catalytic comerter

DESCRIPTION

The evaporative emission control system is used to reduce hydrocarbons emitted to the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the carbon canister.

This system is made up of the following:


- 1. Fuel tank sealing filler cap.
- Fuel check valve with vacuum

relief valve.

- 3. Vapor vent line
- Carbon canister
- 5. Vacuum signal line

eathor mortgade (1981) conten

6. Canister purge line

Evaporative Emission Control System

OPERATION

5 Diaphragm

Fuel vapors from the sealed fuel tank are led into the carbon canister.

The canister is filled with activated charcoals to absorb the fuel vapors when the engine is at rest or at idling.

Fuel filler cap

EC349A

Fuel tank

The checking procedure is as follows

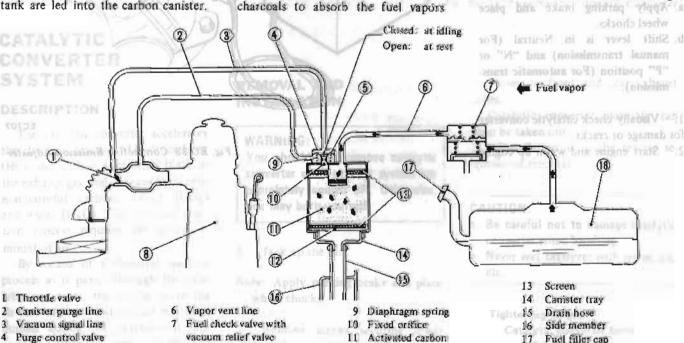


Fig. EC-35 Evaporative Emission Control System (Fuel vapor flow when engine is at rest or at idling)

12 Filter

8 Engine

As the throttle valve opens and car speed increases, vacuum pressure in the vacuum signal line forces the purge control valve to open, and admits an orifice to intake manifold and fuel vapor is then drawn into the intake

manifold through the canister purge line.

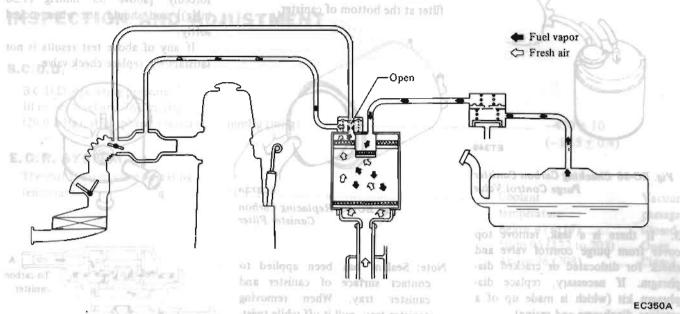


Fig. EC-36 Evaporative Emission Control System (Fuel vapor flow when engine is running)

INSPECTION

VAPOR VENT LINES

- Check all hoses and fuel tank filler cap.
- Disconnect vapor vent line connecting carbon canister to check valve.
- 3. Connect a 3-way connector, a manometer and a cock (or an equivalent 3-way charge cock) to the end of the vent line.
- 4. Supply fresh air into the vapor vent line through the cock little by little until pressure becomes 400 mmH₂O. (15.75 inH₂O).
- 5. Shut the cock completely and leave it unattended.
- After 2.5 minutes, measure the height of the liquid in the manometer.
- Variation in height should remain with 25 mmH₂O (0.98 inH₂O).
- When filler cap does not close completely, the height should drop to zero in a short time.
- If the height does not drop to zero in a short time when filler cap is removed, it is the cause of a stuffy hose.

Note: In case the vent line is stuffy, the breathing in fuel tank is not thoroughly made, thus causing in-

canister and consider truy

When reinstalling canister tray, apply scalart to contact surface of

> sufficient delivery of fuel to engine or vapor lock. If must, therefore, be repaired or replaced.

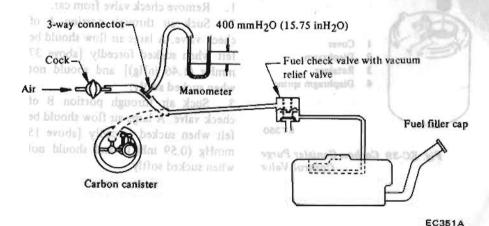


Fig. EC-37 Checking Evaporative Emission Control System

CARBON CANISTER PURGE CONTROL VALVE

Check for fuel vapor leakage, in the distributor vacuum line, at diaphragm of carbon canister purge control valve.

To check for leakage, proceed as follows:

- 1. Disconnect rubber hose, in the line, between T-connector and carbon canister at T-connector.
- Inhale air into the opening of rubber hose running to vacuum hole in carbon canister and ensure that there is no leak.

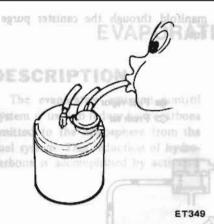


Fig. EC-38 Checking Carbon Canister Purge Control Valve

3. If there is a leak, remove top cover from purge control valve and check for dislocated or cracked diaphragm. If necessary, replace diaphragm kit (which is made up of a retainer, diaphragm and spring).

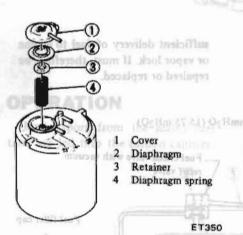


Fig. EC-39 Carbon Canister Purge Control Valve

Fig. EC.97 Checking Eventorating Emission Control System

EC351A

2. Inhale air into the Opening Di in midder hose running to succession bold in carbon canister and casure that there

CARBON CANISTER FILTER

Check for a contaminated filter. Remove canister tray and remove filter at the bottom of canister.

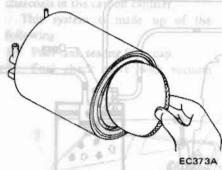
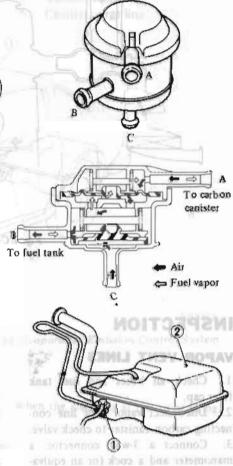


Fig. EC-40 Replacing Carbon Canister Filter

Note: Sealant has been applied to contact surface of canister and canister tray. When removing canister tray, pull it off while twisting.

When reinstalling canister tray, apply sealant to contact surface of canister and canister tray.


Note: In case the wint line is stuffly,

FUEL CHECK VALVE WITH VACUUM RELIEF VALVE

- 1. Remove check valve from car.
- 2. Suck air through portion A of check valve. A large air flow should be felt when sucked forcedly [above 37 mmHg (1.46 inHg)] and should not when sucked softly.
- Suck air through portion B of check valve. A large air flow should be felt when sucked forcedly (above 15 mmHg (0.59 inHg)] and should not when sucked softly.

4. Suck air through portion B while closing portion A with finger, A large air flow should be felt when sucked forcedly [above 35 mmHg (1.38 inHg)] and should not when sucked softly.

If any of above test results is not satisfactory, replace check valve.

- lent 3-way charge cock) to the end Fuel check valve with vacuum relief value

Fig. EC-41 Fuel Check Valve with Vacuum Relief Valve

b. After 2.5 minutes, moissing the beight of the liquid in the manufacter (O, Hm; 89.0) O, Hmm; 25 duw 8. When filler cap store not close

hose.

CAMISTER PURGE

Check for fuel vapor linkage, it/the distributor vactions line, at disploraging To check for leakage, proceed as

SERVICE DATA AND SPECIFICATIONS

INSPECTION AND ADJUSTMENT

B. C. D. D.

B.C.D.D. operating pressure [0 m, sea level and 760 mmHg (29.9 inHg), atmospheric pressure]

mmHg (inHg)	-470 ± 10
	(-18.5 + 0.4)

ELECTRICAL SYSTEM

E.G.R. SYSTEM

Thermal vacuum valve operating temperature

C (°F)		 		Coolant		Vacuum
	N.I. T		-63	tempera	ture	passage
		8		Below 4	7 (117)	Closed
				50 to 95	5 (122 to 203)	. Open
				Above 9	98 (208)	Closed

TIGHTENING TORQUE

B.C.D.D. vacuum control solenoid

E.G.R. thermal vacuum valve

Catalytic converter bolt

kg-cm (in-lb)	20 to 40 (17 to 35)
kg-cm (in-lb)	
kg-m (ft-lb)	Less than 2.2 (16)
kg-m (ft-lb)	